Bivariate Cheney-Sharma operators on simplex
نویسندگان
چکیده
منابع مشابه
On the bivariate Shepard-Lidstone operators
We propose a new combination of the bivariate Shepard operators [10] by the three point Lidstone polynomials introduced in [12]. The new combination inherits both degree of exactness and Lidstone interpolation conditions at each node, which characterize the interpolation polynomial. These new operators nd application to the scattered data interpolation problem when supplementary second order d...
متن کاملBivariate Shepard-Bernoulli operators
We extend the Shepard-Bernoulli operators introduced in [1] to the bivariate case. These new interpolation operators are realized by using local support basis functions introduced in [2] instead of classical Shepard basis functions and the bivariate three point extension [3] of the generalized Taylor polynomial introduced by F. Costabile in [4]. The new operators do not require either the use o...
متن کاملSurface reconstruction using bivariate simplex splines on Delaunay configurations
Recently, a new bivariate simplex spline scheme based on Delaunay configuration has been introduced into the geometric computing community, and it defines a complete spline space that retains many attractive theoretic and computational properties. In this paper, we develop a novel shape modeling framework to reconstruct a closed surface of arbitrary topology based on this new spline scheme. Our...
متن کاملNumerical Integration Based on Bivariate Quartic Quasi-Interpolation Operators
In this paper, we propose a method to deal with numerical integral by using two kinds of C quasi-interpolation operators on the bivariate spline space, and also discuss the convergence properties and error estimates. Moreover, the proposed method is applied to the numerical evaluation of 2-D singular integrals. Numerical experiments will be carried out and the results will be compared with some...
متن کاملSOME BIVARIATE DURRMEYER OPERATORS BASED ON q–INTEGERS
In the present paper we introduce a q -analogue of the bivariate Durrmeyer operators. A convergence theorem for these operators is established and the rate of convergence in terms of modulus of continuity is determined. Also, a Voronovskaja type theorem has been investigated for these operators. Mathematics subject classification (2010): 41A10, 41A36.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hacettepe Journal of Mathematics and Statistics
سال: 2017
ISSN: 1303-5010
DOI: 10.15672/hjms.2017.468